Properties

Label 54000.nl
Modulus $54000$
Conductor $13500$
Order $900$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54000, base_ring=CyclotomicField(900)) M = H._module chi = DirichletCharacter(H, M([450,0,350,873])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(47,54000)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(54000\)
Conductor: \(13500\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(900\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 13500.ec
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{900})$
Fixed field: Number field defined by a degree 900 polynomial (not computed)

First 31 of 240 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{54000}(47,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{180}\right)\) \(e\left(\frac{62}{225}\right)\) \(e\left(\frac{847}{900}\right)\) \(e\left(\frac{193}{300}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{763}{900}\right)\) \(e\left(\frac{119}{225}\right)\) \(e\left(\frac{377}{450}\right)\) \(e\left(\frac{139}{300}\right)\) \(e\left(\frac{131}{450}\right)\)
\(\chi_{54000}(383,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{180}\right)\) \(e\left(\frac{88}{225}\right)\) \(e\left(\frac{353}{900}\right)\) \(e\left(\frac{107}{300}\right)\) \(e\left(\frac{28}{75}\right)\) \(e\left(\frac{437}{900}\right)\) \(e\left(\frac{31}{225}\right)\) \(e\left(\frac{223}{450}\right)\) \(e\left(\frac{161}{300}\right)\) \(e\left(\frac{19}{450}\right)\)
\(\chi_{54000}(527,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{180}\right)\) \(e\left(\frac{166}{225}\right)\) \(e\left(\frac{671}{900}\right)\) \(e\left(\frac{149}{300}\right)\) \(e\left(\frac{46}{75}\right)\) \(e\left(\frac{359}{900}\right)\) \(e\left(\frac{217}{225}\right)\) \(e\left(\frac{211}{450}\right)\) \(e\left(\frac{227}{300}\right)\) \(e\left(\frac{133}{450}\right)\)
\(\chi_{54000}(623,\cdot)\) \(-1\) \(1\) \(e\left(\frac{133}{180}\right)\) \(e\left(\frac{221}{225}\right)\) \(e\left(\frac{301}{900}\right)\) \(e\left(\frac{19}{300}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{829}{900}\right)\) \(e\left(\frac{152}{225}\right)\) \(e\left(\frac{41}{450}\right)\) \(e\left(\frac{37}{300}\right)\) \(e\left(\frac{173}{450}\right)\)
\(\chi_{54000}(767,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{180}\right)\) \(e\left(\frac{83}{225}\right)\) \(e\left(\frac{223}{900}\right)\) \(e\left(\frac{37}{300}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{67}{900}\right)\) \(e\left(\frac{221}{225}\right)\) \(e\left(\frac{443}{450}\right)\) \(e\left(\frac{151}{300}\right)\) \(e\left(\frac{179}{450}\right)\)
\(\chi_{54000}(1103,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{180}\right)\) \(e\left(\frac{217}{225}\right)\) \(e\left(\frac{377}{900}\right)\) \(e\left(\frac{263}{300}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{533}{900}\right)\) \(e\left(\frac{79}{225}\right)\) \(e\left(\frac{307}{450}\right)\) \(e\left(\frac{149}{300}\right)\) \(e\left(\frac{121}{450}\right)\)
\(\chi_{54000}(1247,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{180}\right)\) \(e\left(\frac{97}{225}\right)\) \(e\left(\frac{407}{900}\right)\) \(e\left(\frac{233}{300}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{203}{900}\right)\) \(e\left(\frac{139}{225}\right)\) \(e\left(\frac{187}{450}\right)\) \(e\left(\frac{59}{300}\right)\) \(e\left(\frac{361}{450}\right)\)
\(\chi_{54000}(1487,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{180}\right)\) \(e\left(\frac{194}{225}\right)\) \(e\left(\frac{139}{900}\right)\) \(e\left(\frac{241}{300}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{631}{900}\right)\) \(e\left(\frac{53}{225}\right)\) \(e\left(\frac{149}{450}\right)\) \(e\left(\frac{43}{300}\right)\) \(e\left(\frac{47}{450}\right)\)
\(\chi_{54000}(1823,\cdot)\) \(-1\) \(1\) \(e\left(\frac{173}{180}\right)\) \(e\left(\frac{211}{225}\right)\) \(e\left(\frac{41}{900}\right)\) \(e\left(\frac{179}{300}\right)\) \(e\left(\frac{16}{75}\right)\) \(e\left(\frac{89}{900}\right)\) \(e\left(\frac{82}{225}\right)\) \(e\left(\frac{31}{450}\right)\) \(e\left(\frac{17}{300}\right)\) \(e\left(\frac{43}{450}\right)\)
\(\chi_{54000}(1967,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{180}\right)\) \(e\left(\frac{118}{225}\right)\) \(e\left(\frac{683}{900}\right)\) \(e\left(\frac{77}{300}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{407}{900}\right)\) \(e\left(\frac{16}{225}\right)\) \(e\left(\frac{253}{450}\right)\) \(e\left(\frac{71}{300}\right)\) \(e\left(\frac{409}{450}\right)\)
\(\chi_{54000}(2063,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{180}\right)\) \(e\left(\frac{29}{225}\right)\) \(e\left(\frac{349}{900}\right)\) \(e\left(\frac{31}{300}\right)\) \(e\left(\frac{74}{75}\right)\) \(e\left(\frac{121}{900}\right)\) \(e\left(\frac{23}{225}\right)\) \(e\left(\frac{209}{450}\right)\) \(e\left(\frac{13}{300}\right)\) \(e\left(\frac{377}{450}\right)\)
\(\chi_{54000}(2687,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{180}\right)\) \(e\left(\frac{4}{225}\right)\) \(e\left(\frac{599}{900}\right)\) \(e\left(\frac{281}{300}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{71}{900}\right)\) \(e\left(\frac{73}{225}\right)\) \(e\left(\frac{409}{450}\right)\) \(e\left(\frac{263}{300}\right)\) \(e\left(\frac{277}{450}\right)\)
\(\chi_{54000}(2783,\cdot)\) \(-1\) \(1\) \(e\left(\frac{169}{180}\right)\) \(e\left(\frac{68}{225}\right)\) \(e\left(\frac{733}{900}\right)\) \(e\left(\frac{127}{300}\right)\) \(e\left(\frac{8}{75}\right)\) \(e\left(\frac{757}{900}\right)\) \(e\left(\frac{116}{225}\right)\) \(e\left(\frac{203}{450}\right)\) \(e\left(\frac{121}{300}\right)\) \(e\left(\frac{209}{450}\right)\)
\(\chi_{54000}(2927,\cdot)\) \(-1\) \(1\) \(e\left(\frac{163}{180}\right)\) \(e\left(\frac{11}{225}\right)\) \(e\left(\frac{691}{900}\right)\) \(e\left(\frac{229}{300}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{139}{900}\right)\) \(e\left(\frac{32}{225}\right)\) \(e\left(\frac{281}{450}\right)\) \(e\left(\frac{67}{300}\right)\) \(e\left(\frac{143}{450}\right)\)
\(\chi_{54000}(3263,\cdot)\) \(-1\) \(1\) \(e\left(\frac{77}{180}\right)\) \(e\left(\frac{19}{225}\right)\) \(e\left(\frac{89}{900}\right)\) \(e\left(\frac{191}{300}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{281}{900}\right)\) \(e\left(\frac{178}{225}\right)\) \(e\left(\frac{199}{450}\right)\) \(e\left(\frac{293}{300}\right)\) \(e\left(\frac{247}{450}\right)\)
\(\chi_{54000}(3503,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{180}\right)\) \(e\left(\frac{197}{225}\right)\) \(e\left(\frac{757}{900}\right)\) \(e\left(\frac{283}{300}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{853}{900}\right)\) \(e\left(\frac{164}{225}\right)\) \(e\left(\frac{287}{450}\right)\) \(e\left(\frac{109}{300}\right)\) \(e\left(\frac{311}{450}\right)\)
\(\chi_{54000}(3647,\cdot)\) \(-1\) \(1\) \(e\left(\frac{151}{180}\right)\) \(e\left(\frac{167}{225}\right)\) \(e\left(\frac{427}{900}\right)\) \(e\left(\frac{13}{300}\right)\) \(e\left(\frac{2}{75}\right)\) \(e\left(\frac{883}{900}\right)\) \(e\left(\frac{179}{225}\right)\) \(e\left(\frac{257}{450}\right)\) \(e\left(\frac{199}{300}\right)\) \(e\left(\frac{371}{450}\right)\)
\(\chi_{54000}(3983,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{180}\right)\) \(e\left(\frac{58}{225}\right)\) \(e\left(\frac{473}{900}\right)\) \(e\left(\frac{287}{300}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{17}{900}\right)\) \(e\left(\frac{46}{225}\right)\) \(e\left(\frac{193}{450}\right)\) \(e\left(\frac{101}{300}\right)\) \(e\left(\frac{79}{450}\right)\)
\(\chi_{54000}(4127,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{46}{225}\right)\) \(e\left(\frac{251}{900}\right)\) \(e\left(\frac{269}{300}\right)\) \(e\left(\frac{1}{75}\right)\) \(e\left(\frac{479}{900}\right)\) \(e\left(\frac{52}{225}\right)\) \(e\left(\frac{91}{450}\right)\) \(e\left(\frac{287}{300}\right)\) \(e\left(\frac{373}{450}\right)\)
\(\chi_{54000}(4223,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{180}\right)\) \(e\left(\frac{191}{225}\right)\) \(e\left(\frac{421}{900}\right)\) \(e\left(\frac{199}{300}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{409}{900}\right)\) \(e\left(\frac{167}{225}\right)\) \(e\left(\frac{11}{450}\right)\) \(e\left(\frac{277}{300}\right)\) \(e\left(\frac{233}{450}\right)\)
\(\chi_{54000}(4367,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{180}\right)\) \(e\left(\frac{188}{225}\right)\) \(e\left(\frac{703}{900}\right)\) \(e\left(\frac{157}{300}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{187}{900}\right)\) \(e\left(\frac{56}{225}\right)\) \(e\left(\frac{323}{450}\right)\) \(e\left(\frac{211}{300}\right)\) \(e\left(\frac{419}{450}\right)\)
\(\chi_{54000}(4703,\cdot)\) \(-1\) \(1\) \(e\left(\frac{161}{180}\right)\) \(e\left(\frac{187}{225}\right)\) \(e\left(\frac{497}{900}\right)\) \(e\left(\frac{143}{300}\right)\) \(e\left(\frac{22}{75}\right)\) \(e\left(\frac{113}{900}\right)\) \(e\left(\frac{94}{225}\right)\) \(e\left(\frac{277}{450}\right)\) \(e\left(\frac{89}{300}\right)\) \(e\left(\frac{181}{450}\right)\)
\(\chi_{54000}(4847,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{180}\right)\) \(e\left(\frac{202}{225}\right)\) \(e\left(\frac{887}{900}\right)\) \(e\left(\frac{53}{300}\right)\) \(e\left(\frac{37}{75}\right)\) \(e\left(\frac{323}{900}\right)\) \(e\left(\frac{199}{225}\right)\) \(e\left(\frac{67}{450}\right)\) \(e\left(\frac{119}{300}\right)\) \(e\left(\frac{151}{450}\right)\)
\(\chi_{54000}(5087,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{74}{225}\right)\) \(e\left(\frac{619}{900}\right)\) \(e\left(\frac{61}{300}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{751}{900}\right)\) \(e\left(\frac{113}{225}\right)\) \(e\left(\frac{29}{450}\right)\) \(e\left(\frac{103}{300}\right)\) \(e\left(\frac{287}{450}\right)\)
\(\chi_{54000}(5423,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{180}\right)\) \(e\left(\frac{181}{225}\right)\) \(e\left(\frac{161}{900}\right)\) \(e\left(\frac{59}{300}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{569}{900}\right)\) \(e\left(\frac{97}{225}\right)\) \(e\left(\frac{1}{450}\right)\) \(e\left(\frac{257}{300}\right)\) \(e\left(\frac{103}{450}\right)\)
\(\chi_{54000}(5567,\cdot)\) \(-1\) \(1\) \(e\left(\frac{179}{180}\right)\) \(e\left(\frac{223}{225}\right)\) \(e\left(\frac{263}{900}\right)\) \(e\left(\frac{197}{300}\right)\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{527}{900}\right)\) \(e\left(\frac{76}{225}\right)\) \(e\left(\frac{133}{450}\right)\) \(e\left(\frac{131}{300}\right)\) \(e\left(\frac{199}{450}\right)\)
\(\chi_{54000}(5663,\cdot)\) \(-1\) \(1\) \(e\left(\frac{157}{180}\right)\) \(e\left(\frac{224}{225}\right)\) \(e\left(\frac{469}{900}\right)\) \(e\left(\frac{211}{300}\right)\) \(e\left(\frac{44}{75}\right)\) \(e\left(\frac{601}{900}\right)\) \(e\left(\frac{38}{225}\right)\) \(e\left(\frac{179}{450}\right)\) \(e\left(\frac{253}{300}\right)\) \(e\left(\frac{437}{450}\right)\)
\(\chi_{54000}(6287,\cdot)\) \(-1\) \(1\) \(e\left(\frac{167}{180}\right)\) \(e\left(\frac{109}{225}\right)\) \(e\left(\frac{179}{900}\right)\) \(e\left(\frac{101}{300}\right)\) \(e\left(\frac{4}{75}\right)\) \(e\left(\frac{191}{900}\right)\) \(e\left(\frac{133}{225}\right)\) \(e\left(\frac{289}{450}\right)\) \(e\left(\frac{23}{300}\right)\) \(e\left(\frac{67}{450}\right)\)
\(\chi_{54000}(6383,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{180}\right)\) \(e\left(\frac{38}{225}\right)\) \(e\left(\frac{853}{900}\right)\) \(e\left(\frac{7}{300}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{337}{900}\right)\) \(e\left(\frac{131}{225}\right)\) \(e\left(\frac{173}{450}\right)\) \(e\left(\frac{61}{300}\right)\) \(e\left(\frac{269}{450}\right)\)
\(\chi_{54000}(6527,\cdot)\) \(-1\) \(1\) \(e\left(\frac{103}{180}\right)\) \(e\left(\frac{116}{225}\right)\) \(e\left(\frac{271}{900}\right)\) \(e\left(\frac{49}{300}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{259}{900}\right)\) \(e\left(\frac{92}{225}\right)\) \(e\left(\frac{161}{450}\right)\) \(e\left(\frac{127}{300}\right)\) \(e\left(\frac{383}{450}\right)\)
\(\chi_{54000}(6863,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{180}\right)\) \(e\left(\frac{214}{225}\right)\) \(e\left(\frac{209}{900}\right)\) \(e\left(\frac{71}{300}\right)\) \(e\left(\frac{34}{75}\right)\) \(e\left(\frac{761}{900}\right)\) \(e\left(\frac{193}{225}\right)\) \(e\left(\frac{169}{450}\right)\) \(e\left(\frac{233}{300}\right)\) \(e\left(\frac{307}{450}\right)\)