sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5328, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,9,0,16]))
pari:[g,chi] = znchar(Mod(5113,5328))
\(\chi_{5328}(793,\cdot)\)
\(\chi_{5328}(937,\cdot)\)
\(\chi_{5328}(1513,\cdot)\)
\(\chi_{5328}(2377,\cdot)\)
\(\chi_{5328}(2809,\cdot)\)
\(\chi_{5328}(5113,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1999,1333,2369,1297)\) → \((1,-1,1,e\left(\frac{8}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 5328 }(5113, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)