Properties

Label 5200.hx
Modulus $5200$
Conductor $5200$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,5,9,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(437,5200)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5200\)
Conductor: \(5200\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{5200}(437,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{5200}(733,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{5200}(1477,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{5200}(1773,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{5200}(2517,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{5200}(2813,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{5200}(3853,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{5200}(4597,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{20}\right)\)