Properties

Label 5200.dg
Modulus $5200$
Conductor $65$
Order $6$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([0,0,3,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(49,5200)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5200\)
Conductor: \(65\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(6\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 65.l
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.6.46411625.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{5200}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{5200}(849,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)