Properties

Label 5200.671
Modulus $5200$
Conductor $1300$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,0,12,5]))
 
Copy content pari:[g,chi] = znchar(Mod(671,5200))
 

Basic properties

Modulus: \(5200\)
Conductor: \(1300\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1300}(671,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5200.if

\(\chi_{5200}(31,\cdot)\) \(\chi_{5200}(671,\cdot)\) \(\chi_{5200}(1071,\cdot)\) \(\chi_{5200}(1711,\cdot)\) \(\chi_{5200}(2111,\cdot)\) \(\chi_{5200}(3791,\cdot)\) \(\chi_{5200}(4191,\cdot)\) \(\chi_{5200}(4831,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((1951,1301,4577,1601)\) → \((-1,1,e\left(\frac{3}{5}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 5200 }(671, a) \) \(1\)\(1\)\(e\left(\frac{7}{10}\right)\)\(i\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5200 }(671,a) \;\) at \(\;a = \) e.g. 2