Properties

Label 5200.4343
Modulus $5200$
Conductor $40$
Order $4$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,2,3,0]))
 
Copy content pari:[g,chi] = znchar(Mod(4343,5200))
 

Basic properties

Modulus: \(5200\)
Conductor: \(40\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{40}(3,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5200.bw

\(\chi_{5200}(807,\cdot)\) \(\chi_{5200}(4343,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.8000.1

Values on generators

\((1951,1301,4577,1601)\) → \((-1,-1,-i,1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 5200 }(4343, a) \) \(1\)\(1\)\(i\)\(i\)\(-1\)\(1\)\(-i\)\(-1\)\(-1\)\(-i\)\(-i\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5200 }(4343,a) \;\) at \(\;a = \) e.g. 2