sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5200, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,30,24,25]))
pari:[g,chi] = znchar(Mod(4231,5200))
\(\chi_{5200}(71,\cdot)\)
\(\chi_{5200}(631,\cdot)\)
\(\chi_{5200}(791,\cdot)\)
\(\chi_{5200}(1111,\cdot)\)
\(\chi_{5200}(1671,\cdot)\)
\(\chi_{5200}(1831,\cdot)\)
\(\chi_{5200}(1991,\cdot)\)
\(\chi_{5200}(2711,\cdot)\)
\(\chi_{5200}(2871,\cdot)\)
\(\chi_{5200}(3031,\cdot)\)
\(\chi_{5200}(3191,\cdot)\)
\(\chi_{5200}(3911,\cdot)\)
\(\chi_{5200}(4071,\cdot)\)
\(\chi_{5200}(4231,\cdot)\)
\(\chi_{5200}(4791,\cdot)\)
\(\chi_{5200}(5111,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,1301,4577,1601)\) → \((-1,-1,e\left(\frac{2}{5}\right),e\left(\frac{5}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 5200 }(4231, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{29}{30}\right)\) |
sage:chi.jacobi_sum(n)