sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5200, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,0,4,5]))
pari:[g,chi] = znchar(Mod(4081,5200))
\(\chi_{5200}(961,\cdot)\)
\(\chi_{5200}(3041,\cdot)\)
\(\chi_{5200}(4081,\cdot)\)
\(\chi_{5200}(5121,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,1301,4577,1601)\) → \((1,1,e\left(\frac{2}{5}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 5200 }(4081, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) |
sage:chi.jacobi_sum(n)