sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5200, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,15,9,35]))
pari:[g,chi] = znchar(Mod(2533,5200))
| Modulus: | \(5200\) | |
| Conductor: | \(5200\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5200}(453,\cdot)\)
\(\chi_{5200}(717,\cdot)\)
\(\chi_{5200}(877,\cdot)\)
\(\chi_{5200}(1333,\cdot)\)
\(\chi_{5200}(1917,\cdot)\)
\(\chi_{5200}(2373,\cdot)\)
\(\chi_{5200}(2533,\cdot)\)
\(\chi_{5200}(2797,\cdot)\)
\(\chi_{5200}(3413,\cdot)\)
\(\chi_{5200}(3573,\cdot)\)
\(\chi_{5200}(3837,\cdot)\)
\(\chi_{5200}(3997,\cdot)\)
\(\chi_{5200}(4453,\cdot)\)
\(\chi_{5200}(4613,\cdot)\)
\(\chi_{5200}(4877,\cdot)\)
\(\chi_{5200}(5037,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,1301,4577,1601)\) → \((1,i,e\left(\frac{3}{20}\right),e\left(\frac{7}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
| \( \chi_{ 5200 }(2533, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{23}{60}\right)\) |
sage:chi.jacobi_sum(n)