sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5200, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,15,54,35]))
pari:[g,chi] = znchar(Mod(219,5200))
Modulus: | \(5200\) | |
Conductor: | \(5200\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5200}(19,\cdot)\)
\(\chi_{5200}(59,\cdot)\)
\(\chi_{5200}(219,\cdot)\)
\(\chi_{5200}(1059,\cdot)\)
\(\chi_{5200}(1259,\cdot)\)
\(\chi_{5200}(1939,\cdot)\)
\(\chi_{5200}(2139,\cdot)\)
\(\chi_{5200}(2979,\cdot)\)
\(\chi_{5200}(3139,\cdot)\)
\(\chi_{5200}(3179,\cdot)\)
\(\chi_{5200}(3339,\cdot)\)
\(\chi_{5200}(4019,\cdot)\)
\(\chi_{5200}(4179,\cdot)\)
\(\chi_{5200}(4219,\cdot)\)
\(\chi_{5200}(4379,\cdot)\)
\(\chi_{5200}(5059,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,1301,4577,1601)\) → \((-1,i,e\left(\frac{9}{10}\right),e\left(\frac{7}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 5200 }(219, a) \) |
\(1\) | \(1\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{53}{60}\right)\) |
sage:chi.jacobi_sum(n)