Properties

Label 5200.1881
Modulus $5200$
Conductor $2600$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,15,12,20]))
 
Copy content pari:[g,chi] = znchar(Mod(1881,5200))
 

Basic properties

Modulus: \(5200\)
Conductor: \(2600\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2600}(581,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5200.ik

\(\chi_{5200}(841,\cdot)\) \(\chi_{5200}(1641,\cdot)\) \(\chi_{5200}(1881,\cdot)\) \(\chi_{5200}(2681,\cdot)\) \(\chi_{5200}(2921,\cdot)\) \(\chi_{5200}(3721,\cdot)\) \(\chi_{5200}(3961,\cdot)\) \(\chi_{5200}(4761,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((1951,1301,4577,1601)\) → \((1,-1,e\left(\frac{2}{5}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 5200 }(1881, a) \) \(1\)\(1\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{29}{30}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5200 }(1881,a) \;\) at \(\;a = \) e.g. 2