Properties

Label 5200.1429
Modulus $5200$
Conductor $5200$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,5,2,10]))
 
Copy content pari:[g,chi] = znchar(Mod(1429,5200))
 

Basic properties

Modulus: \(5200\)
Conductor: \(5200\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5200.gx

\(\chi_{5200}(389,\cdot)\) \(\chi_{5200}(909,\cdot)\) \(\chi_{5200}(1429,\cdot)\) \(\chi_{5200}(2469,\cdot)\) \(\chi_{5200}(2989,\cdot)\) \(\chi_{5200}(3509,\cdot)\) \(\chi_{5200}(4029,\cdot)\) \(\chi_{5200}(5069,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((1951,1301,4577,1601)\) → \((1,i,e\left(\frac{1}{10}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 5200 }(1429, a) \) \(1\)\(1\)\(e\left(\frac{9}{20}\right)\)\(-1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{19}{20}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5200 }(1429,a) \;\) at \(\;a = \) e.g. 2