from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5184, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([36,45,68]))
chi.galois_orbit()
[g,chi] = znchar(Mod(71,5184))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(5184\) | |
Conductor: | \(864\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(72\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 864.bt | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{72})$ |
Fixed field: | Number field defined by a degree 72 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{5184}(71,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{5184}(359,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{5184}(503,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{5184}(791,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{5184}(935,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{5184}(1223,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{5184}(1367,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{5184}(1655,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{5184}(1799,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{5184}(2087,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{5184}(2231,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{5184}(2519,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{5184}(2663,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{5184}(2951,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{5184}(3095,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{5184}(3383,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{5184}(3527,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{5184}(3815,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{5184}(3959,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{5184}(4247,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{5184}(4391,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{5184}(4679,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{5184}(4823,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{5184}(5111,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{11}{18}\right)\) |