sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5175, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,7,0]))
pari:[g,chi] = znchar(Mod(3934,5175))
\(\chi_{5175}(829,\cdot)\)
\(\chi_{5175}(1864,\cdot)\)
\(\chi_{5175}(3934,\cdot)\)
\(\chi_{5175}(4969,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4601,3727,2926)\) → \((1,e\left(\frac{7}{10}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 5175 }(3934, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(-1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) |
sage:chi.jacobi_sum(n)