Properties

Label 5175.352
Modulus $5175$
Conductor $575$
Order $220$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5175, base_ring=CyclotomicField(220)) M = H._module chi = DirichletCharacter(H, M([0,11,190]))
 
Copy content pari:[g,chi] = znchar(Mod(352,5175))
 

Basic properties

Modulus: \(5175\)
Conductor: \(575\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(220\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{575}(352,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5175.de

\(\chi_{5175}(28,\cdot)\) \(\chi_{5175}(37,\cdot)\) \(\chi_{5175}(172,\cdot)\) \(\chi_{5175}(217,\cdot)\) \(\chi_{5175}(352,\cdot)\) \(\chi_{5175}(388,\cdot)\) \(\chi_{5175}(433,\cdot)\) \(\chi_{5175}(442,\cdot)\) \(\chi_{5175}(523,\cdot)\) \(\chi_{5175}(613,\cdot)\) \(\chi_{5175}(658,\cdot)\) \(\chi_{5175}(802,\cdot)\) \(\chi_{5175}(838,\cdot)\) \(\chi_{5175}(847,\cdot)\) \(\chi_{5175}(937,\cdot)\) \(\chi_{5175}(973,\cdot)\) \(\chi_{5175}(1027,\cdot)\) \(\chi_{5175}(1063,\cdot)\) \(\chi_{5175}(1072,\cdot)\) \(\chi_{5175}(1252,\cdot)\) \(\chi_{5175}(1378,\cdot)\) \(\chi_{5175}(1387,\cdot)\) \(\chi_{5175}(1423,\cdot)\) \(\chi_{5175}(1477,\cdot)\) \(\chi_{5175}(1558,\cdot)\) \(\chi_{5175}(1648,\cdot)\) \(\chi_{5175}(1792,\cdot)\) \(\chi_{5175}(1828,\cdot)\) \(\chi_{5175}(1837,\cdot)\) \(\chi_{5175}(1873,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{220})$
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

\((4601,3727,2926)\) → \((1,e\left(\frac{1}{20}\right),e\left(\frac{19}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 5175 }(352, a) \) \(1\)\(1\)\(e\left(\frac{171}{220}\right)\)\(e\left(\frac{61}{110}\right)\)\(e\left(\frac{29}{44}\right)\)\(e\left(\frac{73}{220}\right)\)\(e\left(\frac{63}{110}\right)\)\(e\left(\frac{9}{220}\right)\)\(e\left(\frac{24}{55}\right)\)\(e\left(\frac{6}{55}\right)\)\(e\left(\frac{153}{220}\right)\)\(e\left(\frac{47}{55}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5175 }(352,a) \;\) at \(\;a = \) e.g. 2