sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5175, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([275,264,15]))
pari:[g,chi] = znchar(Mod(1661,5175))
| Modulus: | \(5175\) | |
| Conductor: | \(5175\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5175}(11,\cdot)\)
\(\chi_{5175}(56,\cdot)\)
\(\chi_{5175}(86,\cdot)\)
\(\chi_{5175}(191,\cdot)\)
\(\chi_{5175}(221,\cdot)\)
\(\chi_{5175}(281,\cdot)\)
\(\chi_{5175}(356,\cdot)\)
\(\chi_{5175}(536,\cdot)\)
\(\chi_{5175}(596,\cdot)\)
\(\chi_{5175}(641,\cdot)\)
\(\chi_{5175}(686,\cdot)\)
\(\chi_{5175}(866,\cdot)\)
\(\chi_{5175}(911,\cdot)\)
\(\chi_{5175}(941,\cdot)\)
\(\chi_{5175}(986,\cdot)\)
\(\chi_{5175}(1031,\cdot)\)
\(\chi_{5175}(1046,\cdot)\)
\(\chi_{5175}(1091,\cdot)\)
\(\chi_{5175}(1121,\cdot)\)
\(\chi_{5175}(1211,\cdot)\)
\(\chi_{5175}(1256,\cdot)\)
\(\chi_{5175}(1316,\cdot)\)
\(\chi_{5175}(1391,\cdot)\)
\(\chi_{5175}(1436,\cdot)\)
\(\chi_{5175}(1571,\cdot)\)
\(\chi_{5175}(1631,\cdot)\)
\(\chi_{5175}(1661,\cdot)\)
\(\chi_{5175}(1721,\cdot)\)
\(\chi_{5175}(1811,\cdot)\)
\(\chi_{5175}(1946,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4601,3727,2926)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{4}{5}\right),e\left(\frac{1}{22}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 5175 }(1661, a) \) |
\(1\) | \(1\) | \(e\left(\frac{239}{330}\right)\) | \(e\left(\frac{74}{165}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{19}{110}\right)\) | \(e\left(\frac{7}{165}\right)\) | \(e\left(\frac{83}{165}\right)\) | \(e\left(\frac{152}{165}\right)\) | \(e\left(\frac{148}{165}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{9}{110}\right)\) |
sage:chi.jacobi_sum(n)