sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5175, base_ring=CyclotomicField(660))
M = H._module
chi = DirichletCharacter(H, M([110,231,420]))
pari:[g,chi] = znchar(Mod(128,5175))
| Modulus: | \(5175\) | |
| Conductor: | \(5175\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(660\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5175}(2,\cdot)\)
\(\chi_{5175}(77,\cdot)\)
\(\chi_{5175}(128,\cdot)\)
\(\chi_{5175}(167,\cdot)\)
\(\chi_{5175}(173,\cdot)\)
\(\chi_{5175}(248,\cdot)\)
\(\chi_{5175}(302,\cdot)\)
\(\chi_{5175}(308,\cdot)\)
\(\chi_{5175}(317,\cdot)\)
\(\chi_{5175}(338,\cdot)\)
\(\chi_{5175}(347,\cdot)\)
\(\chi_{5175}(353,\cdot)\)
\(\chi_{5175}(473,\cdot)\)
\(\chi_{5175}(533,\cdot)\)
\(\chi_{5175}(542,\cdot)\)
\(\chi_{5175}(578,\cdot)\)
\(\chi_{5175}(587,\cdot)\)
\(\chi_{5175}(623,\cdot)\)
\(\chi_{5175}(653,\cdot)\)
\(\chi_{5175}(662,\cdot)\)
\(\chi_{5175}(698,\cdot)\)
\(\chi_{5175}(722,\cdot)\)
\(\chi_{5175}(752,\cdot)\)
\(\chi_{5175}(767,\cdot)\)
\(\chi_{5175}(788,\cdot)\)
\(\chi_{5175}(878,\cdot)\)
\(\chi_{5175}(887,\cdot)\)
\(\chi_{5175}(923,\cdot)\)
\(\chi_{5175}(938,\cdot)\)
\(\chi_{5175}(947,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4601,3727,2926)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{7}{20}\right),e\left(\frac{7}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 5175 }(128, a) \) |
\(1\) | \(1\) | \(e\left(\frac{521}{660}\right)\) | \(e\left(\frac{191}{330}\right)\) | \(e\left(\frac{67}{132}\right)\) | \(e\left(\frac{81}{220}\right)\) | \(e\left(\frac{163}{330}\right)\) | \(e\left(\frac{589}{660}\right)\) | \(e\left(\frac{49}{165}\right)\) | \(e\left(\frac{26}{165}\right)\) | \(e\left(\frac{111}{220}\right)\) | \(e\left(\frac{93}{110}\right)\) |
sage:chi.jacobi_sum(n)