Properties

Label 5160.gu
Modulus $5160$
Conductor $2580$
Order $84$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5160, base_ring=CyclotomicField(84)) M = H._module chi = DirichletCharacter(H, M([42,0,42,63,50])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(263,5160)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5160\)
Conductor: \(2580\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(84\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2580.dk
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{5160}(263,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{5160}(287,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{5160}(407,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{5160}(503,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{5160}(743,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{5160}(863,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{5160}(1007,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{5160}(1103,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{5160}(1223,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{5160}(1367,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{5160}(1703,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{5160}(2183,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{5160}(2327,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{5160}(2567,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{5160}(2807,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{5160}(2927,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{5160}(3167,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{5160}(3287,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{5160}(3383,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{5160}(3503,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{5160}(3767,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{5160}(4103,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{5160}(4247,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{5160}(4463,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{14}\right)\)