Properties

Label 5160.dc
Modulus $5160$
Conductor $43$
Order $7$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5160, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([0,0,0,0,6])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(121,5160)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5160\)
Conductor: \(43\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(7\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 43.e
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 7.7.6321363049.1

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{5160}(121,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(1\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{5160}(1681,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(1\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{5160}(2161,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(1\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{5160}(3241,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(1\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{5160}(3481,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(1\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{5160}(4321,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(1\) \(e\left(\frac{1}{7}\right)\)