Properties

Label 5160.4891
Modulus $5160$
Conductor $344$
Order $14$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5160, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,7,0,0,3]))
 
Copy content pari:[g,chi] = znchar(Mod(4891,5160))
 

Basic properties

Modulus: \(5160\)
Conductor: \(344\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{344}(75,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5160.em

\(\chi_{5160}(211,\cdot)\) \(\chi_{5160}(1771,\cdot)\) \(\chi_{5160}(2731,\cdot)\) \(\chi_{5160}(3571,\cdot)\) \(\chi_{5160}(3811,\cdot)\) \(\chi_{5160}(4891,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.14.3603461044766854684853927936.1

Values on generators

\((3871,2581,1721,3097,4561)\) → \((-1,-1,1,1,e\left(\frac{3}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 5160 }(4891, a) \) \(1\)\(1\)\(1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(1\)\(e\left(\frac{2}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5160 }(4891,a) \;\) at \(\;a = \) e.g. 2