sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5160, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([0,0,42,63,8]))
pari:[g,chi] = znchar(Mod(4553,5160))
\(\chi_{5160}(17,\cdot)\)
\(\chi_{5160}(353,\cdot)\)
\(\chi_{5160}(497,\cdot)\)
\(\chi_{5160}(617,\cdot)\)
\(\chi_{5160}(713,\cdot)\)
\(\chi_{5160}(857,\cdot)\)
\(\chi_{5160}(977,\cdot)\)
\(\chi_{5160}(1217,\cdot)\)
\(\chi_{5160}(1313,\cdot)\)
\(\chi_{5160}(1433,\cdot)\)
\(\chi_{5160}(1457,\cdot)\)
\(\chi_{5160}(2417,\cdot)\)
\(\chi_{5160}(2633,\cdot)\)
\(\chi_{5160}(2777,\cdot)\)
\(\chi_{5160}(3113,\cdot)\)
\(\chi_{5160}(3377,\cdot)\)
\(\chi_{5160}(3497,\cdot)\)
\(\chi_{5160}(3593,\cdot)\)
\(\chi_{5160}(3713,\cdot)\)
\(\chi_{5160}(3953,\cdot)\)
\(\chi_{5160}(4073,\cdot)\)
\(\chi_{5160}(4313,\cdot)\)
\(\chi_{5160}(4553,\cdot)\)
\(\chi_{5160}(4697,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3871,2581,1721,3097,4561)\) → \((1,1,-1,-i,e\left(\frac{2}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 5160 }(4553, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{14}\right)\) |
sage:chi.jacobi_sum(n)