Properties

Label 5160.2539
Modulus $5160$
Conductor $1720$
Order $14$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5160, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,7,0,7,9]))
 
Copy content pari:[g,chi] = znchar(Mod(2539,5160))
 

Basic properties

Modulus: \(5160\)
Conductor: \(1720\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1720}(819,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5160.dv

\(\chi_{5160}(739,\cdot)\) \(\chi_{5160}(1699,\cdot)\) \(\chi_{5160}(2539,\cdot)\) \(\chi_{5160}(2779,\cdot)\) \(\chi_{5160}(3859,\cdot)\) \(\chi_{5160}(4339,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\((3871,2581,1721,3097,4561)\) → \((-1,-1,1,-1,e\left(\frac{9}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 5160 }(2539, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(-1\)\(e\left(\frac{6}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5160 }(2539,a) \;\) at \(\;a = \) e.g. 2