sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5160, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,42,42,63,46]))
pari:[g,chi] = znchar(Mod(1883,5160))
Modulus: | \(5160\) | |
Conductor: | \(5160\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5160}(227,\cdot)\)
\(\chi_{5160}(347,\cdot)\)
\(\chi_{5160}(587,\cdot)\)
\(\chi_{5160}(707,\cdot)\)
\(\chi_{5160}(803,\cdot)\)
\(\chi_{5160}(923,\cdot)\)
\(\chi_{5160}(1187,\cdot)\)
\(\chi_{5160}(1523,\cdot)\)
\(\chi_{5160}(1667,\cdot)\)
\(\chi_{5160}(1883,\cdot)\)
\(\chi_{5160}(2843,\cdot)\)
\(\chi_{5160}(2867,\cdot)\)
\(\chi_{5160}(2987,\cdot)\)
\(\chi_{5160}(3083,\cdot)\)
\(\chi_{5160}(3323,\cdot)\)
\(\chi_{5160}(3443,\cdot)\)
\(\chi_{5160}(3587,\cdot)\)
\(\chi_{5160}(3683,\cdot)\)
\(\chi_{5160}(3803,\cdot)\)
\(\chi_{5160}(3947,\cdot)\)
\(\chi_{5160}(4283,\cdot)\)
\(\chi_{5160}(4763,\cdot)\)
\(\chi_{5160}(4907,\cdot)\)
\(\chi_{5160}(5147,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3871,2581,1721,3097,4561)\) → \((-1,-1,-1,-i,e\left(\frac{23}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 5160 }(1883, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{14}\right)\) |
sage:chi.jacobi_sum(n)