sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5160, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,0,7,7,10]))
pari:[g,chi] = znchar(Mod(1559,5160))
\(\chi_{5160}(1079,\cdot)\)
\(\chi_{5160}(1559,\cdot)\)
\(\chi_{5160}(2639,\cdot)\)
\(\chi_{5160}(2879,\cdot)\)
\(\chi_{5160}(3719,\cdot)\)
\(\chi_{5160}(4679,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3871,2581,1721,3097,4561)\) → \((-1,1,-1,-1,e\left(\frac{5}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 5160 }(1559, a) \) |
\(1\) | \(1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(-1\) | \(e\left(\frac{11}{14}\right)\) |
sage:chi.jacobi_sum(n)