sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(51, base_ring=CyclotomicField(8))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([0,3]))
pari: [g,chi] = znchar(Mod(49,51))
Basic properties
Modulus: | \(51\) | |
Conductor: | \(17\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(8\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{17}(15,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 51.h
\(\chi_{51}(19,\cdot)\) \(\chi_{51}(25,\cdot)\) \(\chi_{51}(43,\cdot)\) \(\chi_{51}(49,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{8})\) |
Fixed field: | \(\Q(\zeta_{17})^+\) |
Values on generators
\((35,37)\) → \((1,e\left(\frac{3}{8}\right))\)
Values
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\(1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(1\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{51}(49,\cdot)) = \sum_{r\in \Z/51\Z} \chi_{51}(49,r) e\left(\frac{2r}{51}\right) = 2.6858253061+-3.1283130318i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{51}(49,\cdot),\chi_{51}(1,\cdot)) = \sum_{r\in \Z/51\Z} \chi_{51}(49,r) \chi_{51}(1,1-r) = -1 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{51}(49,·))
= \sum_{r \in \Z/51\Z}
\chi_{51}(49,r) e\left(\frac{1 r + 2 r^{-1}}{51}\right)
= 9.6982102546+9.6982102546i \)