sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(27360))
M = H._module
chi = DirichletCharacter(H, M([13680,7695,24624,14080]))
pari:[g,chi] = znchar(Mod(1051,508288))
| Modulus: | \(508288\) | |
| Conductor: | \(508288\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(27360\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{508288}(35,\cdot)\)
\(\chi_{508288}(123,\cdot)\)
\(\chi_{508288}(139,\cdot)\)
\(\chi_{508288}(195,\cdot)\)
\(\chi_{508288}(283,\cdot)\)
\(\chi_{508288}(347,\cdot)\)
\(\chi_{508288}(403,\cdot)\)
\(\chi_{508288}(435,\cdot)\)
\(\chi_{508288}(491,\cdot)\)
\(\chi_{508288}(579,\cdot)\)
\(\chi_{508288}(651,\cdot)\)
\(\chi_{508288}(739,\cdot)\)
\(\chi_{508288}(899,\cdot)\)
\(\chi_{508288}(1051,\cdot)\)
\(\chi_{508288}(1107,\cdot)\)
\(\chi_{508288}(1163,\cdot)\)
\(\chi_{508288}(1195,\cdot)\)
\(\chi_{508288}(1251,\cdot)\)
\(\chi_{508288}(1315,\cdot)\)
\(\chi_{508288}(1339,\cdot)\)
\(\chi_{508288}(1355,\cdot)\)
\(\chi_{508288}(1403,\cdot)\)
\(\chi_{508288}(1491,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((-1,e\left(\frac{9}{32}\right),e\left(\frac{9}{10}\right),e\left(\frac{88}{171}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(1051, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2077}{27360}\right)\) | \(e\left(\frac{7471}{27360}\right)\) | \(e\left(\frac{3673}{4560}\right)\) | \(e\left(\frac{2077}{13680}\right)\) | \(e\left(\frac{11729}{27360}\right)\) | \(e\left(\frac{2387}{6840}\right)\) | \(e\left(\frac{1909}{6840}\right)\) | \(e\left(\frac{4823}{5472}\right)\) | \(e\left(\frac{1565}{2736}\right)\) | \(e\left(\frac{7471}{13680}\right)\) |
sage:chi.jacobi_sum(n)