sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(27360))
M = H._module
chi = DirichletCharacter(H, M([13680,9405,5472,15760]))
pari:[g,chi] = znchar(Mod(675,508288))
| Modulus: | \(508288\) | |
| Conductor: | \(508288\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(27360\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{508288}(3,\cdot)\)
\(\chi_{508288}(59,\cdot)\)
\(\chi_{508288}(91,\cdot)\)
\(\chi_{508288}(147,\cdot)\)
\(\chi_{508288}(203,\cdot)\)
\(\chi_{508288}(355,\cdot)\)
\(\chi_{508288}(515,\cdot)\)
\(\chi_{508288}(603,\cdot)\)
\(\chi_{508288}(675,\cdot)\)
\(\chi_{508288}(763,\cdot)\)
\(\chi_{508288}(819,\cdot)\)
\(\chi_{508288}(851,\cdot)\)
\(\chi_{508288}(907,\cdot)\)
\(\chi_{508288}(971,\cdot)\)
\(\chi_{508288}(1059,\cdot)\)
\(\chi_{508288}(1115,\cdot)\)
\(\chi_{508288}(1131,\cdot)\)
\(\chi_{508288}(1219,\cdot)\)
\(\chi_{508288}(1307,\cdot)\)
\(\chi_{508288}(1435,\cdot)\)
\(\chi_{508288}(1523,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((-1,e\left(\frac{11}{32}\right),e\left(\frac{1}{5}\right),e\left(\frac{197}{342}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(675, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5431}{27360}\right)\) | \(e\left(\frac{21373}{27360}\right)\) | \(e\left(\frac{3379}{4560}\right)\) | \(e\left(\frac{5431}{13680}\right)\) | \(e\left(\frac{23747}{27360}\right)\) | \(e\left(\frac{6701}{6840}\right)\) | \(e\left(\frac{4147}{6840}\right)\) | \(e\left(\frac{5141}{5472}\right)\) | \(e\left(\frac{1127}{2736}\right)\) | \(e\left(\frac{7693}{13680}\right)\) |
sage:chi.jacobi_sum(n)