sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(27360))
M = H._module
chi = DirichletCharacter(H, M([13680,12825,8208,18640]))
pari:[g,chi] = znchar(Mod(371,508288))
| Modulus: | \(508288\) | |
| Conductor: | \(508288\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(27360\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{508288}(51,\cdot)\)
\(\chi_{508288}(211,\cdot)\)
\(\chi_{508288}(371,\cdot)\)
\(\chi_{508288}(459,\cdot)\)
\(\chi_{508288}(523,\cdot)\)
\(\chi_{508288}(547,\cdot)\)
\(\chi_{508288}(611,\cdot)\)
\(\chi_{508288}(667,\cdot)\)
\(\chi_{508288}(699,\cdot)\)
\(\chi_{508288}(755,\cdot)\)
\(\chi_{508288}(811,\cdot)\)
\(\chi_{508288}(827,\cdot)\)
\(\chi_{508288}(915,\cdot)\)
\(\chi_{508288}(963,\cdot)\)
\(\chi_{508288}(1003,\cdot)\)
\(\chi_{508288}(1267,\cdot)\)
\(\chi_{508288}(1283,\cdot)\)
\(\chi_{508288}(1371,\cdot)\)
\(\chi_{508288}(1427,\cdot)\)
\(\chi_{508288}(1459,\cdot)\)
\(\chi_{508288}(1515,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((-1,e\left(\frac{15}{32}\right),e\left(\frac{3}{10}\right),e\left(\frac{233}{342}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(371, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{139}{27360}\right)\) | \(e\left(\frac{19897}{27360}\right)\) | \(e\left(\frac{2191}{4560}\right)\) | \(e\left(\frac{139}{13680}\right)\) | \(e\left(\frac{12983}{27360}\right)\) | \(e\left(\frac{5009}{6840}\right)\) | \(e\left(\frac{5443}{6840}\right)\) | \(e\left(\frac{2657}{5472}\right)\) | \(e\left(\frac{1451}{2736}\right)\) | \(e\left(\frac{6217}{13680}\right)\) |
sage:chi.jacobi_sum(n)