Properties

Label 508288.31837
Modulus $508288$
Conductor $26752$
Order $480$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(508288, base_ring=CyclotomicField(480)) M = H._module chi = DirichletCharacter(H, M([0,165,384,400]))
 
Copy content pari:[g,chi] = znchar(Mod(31837,508288))
 

Basic properties

Modulus: \(508288\)
Conductor: \(26752\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(480\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{26752}(5085,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 508288.op

\(\chi_{508288}(69,\cdot)\) \(\chi_{508288}(2957,\cdot)\) \(\chi_{508288}(5845,\cdot)\) \(\chi_{508288}(8957,\cdot)\) \(\chi_{508288}(11621,\cdot)\) \(\chi_{508288}(11845,\cdot)\) \(\chi_{508288}(14733,\cdot)\) \(\chi_{508288}(20509,\cdot)\) \(\chi_{508288}(31837,\cdot)\) \(\chi_{508288}(34725,\cdot)\) \(\chi_{508288}(37613,\cdot)\) \(\chi_{508288}(40725,\cdot)\) \(\chi_{508288}(43389,\cdot)\) \(\chi_{508288}(43613,\cdot)\) \(\chi_{508288}(46501,\cdot)\) \(\chi_{508288}(52277,\cdot)\) \(\chi_{508288}(63605,\cdot)\) \(\chi_{508288}(66493,\cdot)\) \(\chi_{508288}(69381,\cdot)\) \(\chi_{508288}(72493,\cdot)\) \(\chi_{508288}(75157,\cdot)\) \(\chi_{508288}(75381,\cdot)\) \(\chi_{508288}(78269,\cdot)\) \(\chi_{508288}(84045,\cdot)\) \(\chi_{508288}(95373,\cdot)\) \(\chi_{508288}(98261,\cdot)\) \(\chi_{508288}(101149,\cdot)\) \(\chi_{508288}(104261,\cdot)\) \(\chi_{508288}(106925,\cdot)\) \(\chi_{508288}(107149,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{480})$
Fixed field: Number field defined by a degree 480 polynomial (not computed)

Values on generators

\((166783,174725,323457,14081)\) → \((1,e\left(\frac{11}{32}\right),e\left(\frac{4}{5}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 508288 }(31837, a) \) \(-1\)\(1\)\(e\left(\frac{127}{480}\right)\)\(e\left(\frac{421}{480}\right)\)\(e\left(\frac{3}{80}\right)\)\(e\left(\frac{127}{240}\right)\)\(e\left(\frac{59}{480}\right)\)\(e\left(\frac{17}{120}\right)\)\(e\left(\frac{19}{120}\right)\)\(e\left(\frac{29}{96}\right)\)\(e\left(\frac{23}{48}\right)\)\(e\left(\frac{181}{240}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 508288 }(31837,a) \;\) at \(\;a = \) e.g. 2