sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(27360))
M = H._module
chi = DirichletCharacter(H, M([0,23085,19152,1360]))
pari:[g,chi] = znchar(Mod(29,508288))
| Modulus: | \(508288\) | |
| Conductor: | \(508288\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(27360\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{508288}(13,\cdot)\)
\(\chi_{508288}(29,\cdot)\)
\(\chi_{508288}(117,\cdot)\)
\(\chi_{508288}(173,\cdot)\)
\(\chi_{508288}(205,\cdot)\)
\(\chi_{508288}(261,\cdot)\)
\(\chi_{508288}(325,\cdot)\)
\(\chi_{508288}(413,\cdot)\)
\(\chi_{508288}(469,\cdot)\)
\(\chi_{508288}(629,\cdot)\)
\(\chi_{508288}(717,\cdot)\)
\(\chi_{508288}(789,\cdot)\)
\(\chi_{508288}(877,\cdot)\)
\(\chi_{508288}(941,\cdot)\)
\(\chi_{508288}(965,\cdot)\)
\(\chi_{508288}(1085,\cdot)\)
\(\chi_{508288}(1117,\cdot)\)
\(\chi_{508288}(1173,\cdot)\)
\(\chi_{508288}(1229,\cdot)\)
\(\chi_{508288}(1245,\cdot)\)
\(\chi_{508288}(1333,\cdot)\)
\(\chi_{508288}(1381,\cdot)\)
\(\chi_{508288}(1421,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((1,e\left(\frac{27}{32}\right),e\left(\frac{7}{10}\right),e\left(\frac{17}{342}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(29, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1111}{27360}\right)\) | \(e\left(\frac{4813}{27360}\right)\) | \(e\left(\frac{3619}{4560}\right)\) | \(e\left(\frac{1111}{13680}\right)\) | \(e\left(\frac{19427}{27360}\right)\) | \(e\left(\frac{1481}{6840}\right)\) | \(e\left(\frac{1087}{6840}\right)\) | \(e\left(\frac{4565}{5472}\right)\) | \(e\left(\frac{191}{2736}\right)\) | \(e\left(\frac{4813}{13680}\right)\) |
sage:chi.jacobi_sum(n)