Properties

Label 508288.26817
Modulus $508288$
Conductor $31768$
Order $114$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(508288, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([0,57,57,7]))
 
Copy content pari:[g,chi] = znchar(Mod(26817,508288))
 

Basic properties

Modulus: \(508288\)
Conductor: \(31768\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{31768}(10933,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 508288.jk

\(\chi_{508288}(65,\cdot)\) \(\chi_{508288}(2881,\cdot)\) \(\chi_{508288}(26817,\cdot)\) \(\chi_{508288}(29633,\cdot)\) \(\chi_{508288}(53569,\cdot)\) \(\chi_{508288}(80321,\cdot)\) \(\chi_{508288}(83137,\cdot)\) \(\chi_{508288}(107073,\cdot)\) \(\chi_{508288}(109889,\cdot)\) \(\chi_{508288}(133825,\cdot)\) \(\chi_{508288}(136641,\cdot)\) \(\chi_{508288}(163393,\cdot)\) \(\chi_{508288}(187329,\cdot)\) \(\chi_{508288}(190145,\cdot)\) \(\chi_{508288}(214081,\cdot)\) \(\chi_{508288}(216897,\cdot)\) \(\chi_{508288}(240833,\cdot)\) \(\chi_{508288}(243649,\cdot)\) \(\chi_{508288}(267585,\cdot)\) \(\chi_{508288}(270401,\cdot)\) \(\chi_{508288}(294337,\cdot)\) \(\chi_{508288}(297153,\cdot)\) \(\chi_{508288}(321089,\cdot)\) \(\chi_{508288}(323905,\cdot)\) \(\chi_{508288}(347841,\cdot)\) \(\chi_{508288}(350657,\cdot)\) \(\chi_{508288}(374593,\cdot)\) \(\chi_{508288}(377409,\cdot)\) \(\chi_{508288}(401345,\cdot)\) \(\chi_{508288}(404161,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\((166783,174725,323457,14081)\) → \((1,-1,-1,e\left(\frac{7}{114}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 508288 }(26817, a) \) \(1\)\(1\)\(e\left(\frac{2}{57}\right)\)\(e\left(\frac{85}{114}\right)\)\(e\left(\frac{27}{38}\right)\)\(e\left(\frac{4}{57}\right)\)\(e\left(\frac{23}{114}\right)\)\(e\left(\frac{89}{114}\right)\)\(e\left(\frac{43}{114}\right)\)\(e\left(\frac{85}{114}\right)\)\(e\left(\frac{55}{57}\right)\)\(e\left(\frac{28}{57}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 508288 }(26817,a) \;\) at \(\;a = \) e.g. 2