sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(13680))
M = H._module
chi = DirichletCharacter(H, M([0,2565,5472,2000]))
pari:[g,chi] = znchar(Mod(1545,508288))
\(\chi_{508288}(9,\cdot)\)
\(\chi_{508288}(25,\cdot)\)
\(\chi_{508288}(137,\cdot)\)
\(\chi_{508288}(169,\cdot)\)
\(\chi_{508288}(313,\cdot)\)
\(\chi_{508288}(377,\cdot)\)
\(\chi_{508288}(537,\cdot)\)
\(\chi_{508288}(841,\cdot)\)
\(\chi_{508288}(1049,\cdot)\)
\(\chi_{508288}(1081,\cdot)\)
\(\chi_{508288}(1225,\cdot)\)
\(\chi_{508288}(1241,\cdot)\)
\(\chi_{508288}(1545,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((1,e\left(\frac{3}{16}\right),e\left(\frac{2}{5}\right),e\left(\frac{25}{171}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(1545, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1151}{13680}\right)\) | \(e\left(\frac{9653}{13680}\right)\) | \(e\left(\frac{1379}{2280}\right)\) | \(e\left(\frac{1151}{6840}\right)\) | \(e\left(\frac{4267}{13680}\right)\) | \(e\left(\frac{2701}{3420}\right)\) | \(e\left(\frac{3047}{3420}\right)\) | \(e\left(\frac{1885}{2736}\right)\) | \(e\left(\frac{1327}{1368}\right)\) | \(e\left(\frac{2813}{6840}\right)\) |
sage:chi.jacobi_sum(n)