Properties

Label 508288.11463
Modulus $508288$
Conductor $23104$
Order $2736$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(508288, base_ring=CyclotomicField(2736)) M = H._module chi = DirichletCharacter(H, M([1368,2223,0,1840]))
 
Copy content pari:[g,chi] = znchar(Mod(11463,508288))
 

Basic properties

Modulus: \(508288\)
Conductor: \(23104\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2736\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{23104}(12907,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 508288.tr

\(\chi_{508288}(23,\cdot)\) \(\chi_{508288}(199,\cdot)\) \(\chi_{508288}(727,\cdot)\) \(\chi_{508288}(1431,\cdot)\) \(\chi_{508288}(1783,\cdot)\) \(\chi_{508288}(2487,\cdot)\) \(\chi_{508288}(3367,\cdot)\) \(\chi_{508288}(3543,\cdot)\) \(\chi_{508288}(4071,\cdot)\) \(\chi_{508288}(4775,\cdot)\) \(\chi_{508288}(5127,\cdot)\) \(\chi_{508288}(5831,\cdot)\) \(\chi_{508288}(6711,\cdot)\) \(\chi_{508288}(7415,\cdot)\) \(\chi_{508288}(8119,\cdot)\) \(\chi_{508288}(8471,\cdot)\) \(\chi_{508288}(9175,\cdot)\) \(\chi_{508288}(10055,\cdot)\) \(\chi_{508288}(10231,\cdot)\) \(\chi_{508288}(10759,\cdot)\) \(\chi_{508288}(11463,\cdot)\) \(\chi_{508288}(11815,\cdot)\) \(\chi_{508288}(13399,\cdot)\) \(\chi_{508288}(13575,\cdot)\) \(\chi_{508288}(14103,\cdot)\) \(\chi_{508288}(14807,\cdot)\) \(\chi_{508288}(15159,\cdot)\) \(\chi_{508288}(15863,\cdot)\) \(\chi_{508288}(16743,\cdot)\) \(\chi_{508288}(16919,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2736})$
Fixed field: Number field defined by a degree 2736 polynomial (not computed)

Values on generators

\((166783,174725,323457,14081)\) → \((-1,e\left(\frac{13}{16}\right),1,e\left(\frac{115}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 508288 }(11463, a) \) \(-1\)\(1\)\(e\left(\frac{1141}{2736}\right)\)\(e\left(\frac{2287}{2736}\right)\)\(e\left(\frac{229}{456}\right)\)\(e\left(\frac{1141}{1368}\right)\)\(e\left(\frac{1217}{2736}\right)\)\(e\left(\frac{173}{684}\right)\)\(e\left(\frac{505}{684}\right)\)\(e\left(\frac{2515}{2736}\right)\)\(e\left(\frac{85}{1368}\right)\)\(e\left(\frac{919}{1368}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 508288 }(11463,a) \;\) at \(\;a = \) e.g. 2