sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,16]))
pari:[g,chi] = znchar(Mod(113,507))
Modulus: | \(507\) | |
Conductor: | \(507\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{507}(29,\cdot)\)
\(\chi_{507}(35,\cdot)\)
\(\chi_{507}(68,\cdot)\)
\(\chi_{507}(74,\cdot)\)
\(\chi_{507}(107,\cdot)\)
\(\chi_{507}(113,\cdot)\)
\(\chi_{507}(152,\cdot)\)
\(\chi_{507}(185,\cdot)\)
\(\chi_{507}(224,\cdot)\)
\(\chi_{507}(230,\cdot)\)
\(\chi_{507}(263,\cdot)\)
\(\chi_{507}(269,\cdot)\)
\(\chi_{507}(302,\cdot)\)
\(\chi_{507}(308,\cdot)\)
\(\chi_{507}(341,\cdot)\)
\(\chi_{507}(347,\cdot)\)
\(\chi_{507}(380,\cdot)\)
\(\chi_{507}(386,\cdot)\)
\(\chi_{507}(419,\cdot)\)
\(\chi_{507}(425,\cdot)\)
\(\chi_{507}(458,\cdot)\)
\(\chi_{507}(464,\cdot)\)
\(\chi_{507}(497,\cdot)\)
\(\chi_{507}(503,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((170,340)\) → \((-1,e\left(\frac{8}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 507 }(113, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{35}{78}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)