Properties

Label 5041.60
Modulus $5041$
Conductor $5041$
Order $2485$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5041, base_ring=CyclotomicField(4970)) M = H._module chi = DirichletCharacter(H, M([1256]))
 
Copy content pari:[g,chi] = znchar(Mod(60,5041))
 

Basic properties

Modulus: \(5041\)
Conductor: \(5041\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2485\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5041.o

\(\chi_{5041}(2,\cdot)\) \(\chi_{5041}(3,\cdot)\) \(\chi_{5041}(4,\cdot)\) \(\chi_{5041}(6,\cdot)\) \(\chi_{5041}(8,\cdot)\) \(\chi_{5041}(9,\cdot)\) \(\chi_{5041}(10,\cdot)\) \(\chi_{5041}(12,\cdot)\) \(\chi_{5041}(15,\cdot)\) \(\chi_{5041}(16,\cdot)\) \(\chi_{5041}(18,\cdot)\) \(\chi_{5041}(19,\cdot)\) \(\chi_{5041}(24,\cdot)\) \(\chi_{5041}(27,\cdot)\) \(\chi_{5041}(29,\cdot)\) \(\chi_{5041}(36,\cdot)\) \(\chi_{5041}(38,\cdot)\) \(\chi_{5041}(40,\cdot)\) \(\chi_{5041}(43,\cdot)\) \(\chi_{5041}(49,\cdot)\) \(\chi_{5041}(50,\cdot)\) \(\chi_{5041}(58,\cdot)\) \(\chi_{5041}(60,\cdot)\) \(\chi_{5041}(64,\cdot)\) \(\chi_{5041}(73,\cdot)\) \(\chi_{5041}(74,\cdot)\) \(\chi_{5041}(75,\cdot)\) \(\chi_{5041}(77,\cdot)\) \(\chi_{5041}(79,\cdot)\) \(\chi_{5041}(80,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2485})$
Fixed field: Number field defined by a degree 2485 polynomial (not computed)

Values on generators

\(7\) → \(e\left(\frac{628}{2485}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 5041 }(60, a) \) \(1\)\(1\)\(e\left(\frac{1703}{2485}\right)\)\(e\left(\frac{2398}{2485}\right)\)\(e\left(\frac{921}{2485}\right)\)\(e\left(\frac{27}{355}\right)\)\(e\left(\frac{1616}{2485}\right)\)\(e\left(\frac{628}{2485}\right)\)\(e\left(\frac{139}{2485}\right)\)\(e\left(\frac{2311}{2485}\right)\)\(e\left(\frac{1892}{2485}\right)\)\(e\left(\frac{8}{35}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5041 }(60,a) \;\) at \(\;a = \) e.g. 2