sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5041, base_ring=CyclotomicField(4970))
M = H._module
chi = DirichletCharacter(H, M([1256]))
pari:[g,chi] = znchar(Mod(60,5041))
| Modulus: | \(5041\) | |
| Conductor: | \(5041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2485\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5041}(2,\cdot)\)
\(\chi_{5041}(3,\cdot)\)
\(\chi_{5041}(4,\cdot)\)
\(\chi_{5041}(6,\cdot)\)
\(\chi_{5041}(8,\cdot)\)
\(\chi_{5041}(9,\cdot)\)
\(\chi_{5041}(10,\cdot)\)
\(\chi_{5041}(12,\cdot)\)
\(\chi_{5041}(15,\cdot)\)
\(\chi_{5041}(16,\cdot)\)
\(\chi_{5041}(18,\cdot)\)
\(\chi_{5041}(19,\cdot)\)
\(\chi_{5041}(24,\cdot)\)
\(\chi_{5041}(27,\cdot)\)
\(\chi_{5041}(29,\cdot)\)
\(\chi_{5041}(36,\cdot)\)
\(\chi_{5041}(38,\cdot)\)
\(\chi_{5041}(40,\cdot)\)
\(\chi_{5041}(43,\cdot)\)
\(\chi_{5041}(49,\cdot)\)
\(\chi_{5041}(50,\cdot)\)
\(\chi_{5041}(58,\cdot)\)
\(\chi_{5041}(60,\cdot)\)
\(\chi_{5041}(64,\cdot)\)
\(\chi_{5041}(73,\cdot)\)
\(\chi_{5041}(74,\cdot)\)
\(\chi_{5041}(75,\cdot)\)
\(\chi_{5041}(77,\cdot)\)
\(\chi_{5041}(79,\cdot)\)
\(\chi_{5041}(80,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(7\) → \(e\left(\frac{628}{2485}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 5041 }(60, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1703}{2485}\right)\) | \(e\left(\frac{2398}{2485}\right)\) | \(e\left(\frac{921}{2485}\right)\) | \(e\left(\frac{27}{355}\right)\) | \(e\left(\frac{1616}{2485}\right)\) | \(e\left(\frac{628}{2485}\right)\) | \(e\left(\frac{139}{2485}\right)\) | \(e\left(\frac{2311}{2485}\right)\) | \(e\left(\frac{1892}{2485}\right)\) | \(e\left(\frac{8}{35}\right)\) |
sage:chi.jacobi_sum(n)