sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5041, base_ring=CyclotomicField(710))
M = H._module
chi = DirichletCharacter(H, M([438]))
pari:[g,chi] = znchar(Mod(522,5041))
| Modulus: | \(5041\) | |
| Conductor: | \(5041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(355\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5041}(5,\cdot)\)
\(\chi_{5041}(25,\cdot)\)
\(\chi_{5041}(54,\cdot)\)
\(\chi_{5041}(57,\cdot)\)
\(\chi_{5041}(76,\cdot)\)
\(\chi_{5041}(96,\cdot)\)
\(\chi_{5041}(125,\cdot)\)
\(\chi_{5041}(128,\cdot)\)
\(\chi_{5041}(147,\cdot)\)
\(\chi_{5041}(167,\cdot)\)
\(\chi_{5041}(196,\cdot)\)
\(\chi_{5041}(199,\cdot)\)
\(\chi_{5041}(218,\cdot)\)
\(\chi_{5041}(238,\cdot)\)
\(\chi_{5041}(267,\cdot)\)
\(\chi_{5041}(270,\cdot)\)
\(\chi_{5041}(289,\cdot)\)
\(\chi_{5041}(309,\cdot)\)
\(\chi_{5041}(338,\cdot)\)
\(\chi_{5041}(341,\cdot)\)
\(\chi_{5041}(360,\cdot)\)
\(\chi_{5041}(380,\cdot)\)
\(\chi_{5041}(409,\cdot)\)
\(\chi_{5041}(412,\cdot)\)
\(\chi_{5041}(431,\cdot)\)
\(\chi_{5041}(451,\cdot)\)
\(\chi_{5041}(480,\cdot)\)
\(\chi_{5041}(483,\cdot)\)
\(\chi_{5041}(502,\cdot)\)
\(\chi_{5041}(522,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(7\) → \(e\left(\frac{219}{355}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 5041 }(522, a) \) |
\(1\) | \(1\) | \(e\left(\frac{149}{355}\right)\) | \(e\left(\frac{254}{355}\right)\) | \(e\left(\frac{298}{355}\right)\) | \(e\left(\frac{97}{355}\right)\) | \(e\left(\frac{48}{355}\right)\) | \(e\left(\frac{219}{355}\right)\) | \(e\left(\frac{92}{355}\right)\) | \(e\left(\frac{153}{355}\right)\) | \(e\left(\frac{246}{355}\right)\) | \(e\left(\frac{4}{5}\right)\) |
sage:chi.jacobi_sum(n)