sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5041, base_ring=CyclotomicField(994))
M = H._module
chi = DirichletCharacter(H, M([174]))
pari:[g,chi] = znchar(Mod(174,5041))
| Modulus: | \(5041\) | |
| Conductor: | \(5041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(497\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5041}(20,\cdot)\)
\(\chi_{5041}(30,\cdot)\)
\(\chi_{5041}(32,\cdot)\)
\(\chi_{5041}(37,\cdot)\)
\(\chi_{5041}(45,\cdot)\)
\(\chi_{5041}(48,\cdot)\)
\(\chi_{5041}(91,\cdot)\)
\(\chi_{5041}(101,\cdot)\)
\(\chi_{5041}(103,\cdot)\)
\(\chi_{5041}(108,\cdot)\)
\(\chi_{5041}(116,\cdot)\)
\(\chi_{5041}(119,\cdot)\)
\(\chi_{5041}(162,\cdot)\)
\(\chi_{5041}(172,\cdot)\)
\(\chi_{5041}(174,\cdot)\)
\(\chi_{5041}(179,\cdot)\)
\(\chi_{5041}(187,\cdot)\)
\(\chi_{5041}(190,\cdot)\)
\(\chi_{5041}(233,\cdot)\)
\(\chi_{5041}(243,\cdot)\)
\(\chi_{5041}(245,\cdot)\)
\(\chi_{5041}(250,\cdot)\)
\(\chi_{5041}(258,\cdot)\)
\(\chi_{5041}(304,\cdot)\)
\(\chi_{5041}(314,\cdot)\)
\(\chi_{5041}(316,\cdot)\)
\(\chi_{5041}(321,\cdot)\)
\(\chi_{5041}(329,\cdot)\)
\(\chi_{5041}(332,\cdot)\)
\(\chi_{5041}(375,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(7\) → \(e\left(\frac{87}{497}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 5041 }(174, a) \) |
\(1\) | \(1\) | \(e\left(\frac{137}{497}\right)\) | \(e\left(\frac{204}{497}\right)\) | \(e\left(\frac{274}{497}\right)\) | \(e\left(\frac{64}{71}\right)\) | \(e\left(\frac{341}{497}\right)\) | \(e\left(\frac{87}{497}\right)\) | \(e\left(\frac{411}{497}\right)\) | \(e\left(\frac{408}{497}\right)\) | \(e\left(\frac{88}{497}\right)\) | \(e\left(\frac{2}{7}\right)\) |
sage:chi.jacobi_sum(n)