sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5025, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([165,264,80]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1886,5025))
         
     
    
  
   | Modulus: |  \(5025\) |   |  
   | Conductor: |  \(5025\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(330\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{5025}(56,\cdot)\)
  \(\chi_{5025}(71,\cdot)\)
  \(\chi_{5025}(86,\cdot)\)
  \(\chi_{5025}(116,\cdot)\)
  \(\chi_{5025}(236,\cdot)\)
  \(\chi_{5025}(266,\cdot)\)
  \(\chi_{5025}(341,\cdot)\)
  \(\chi_{5025}(356,\cdot)\)
  \(\chi_{5025}(371,\cdot)\)
  \(\chi_{5025}(596,\cdot)\)
  \(\chi_{5025}(686,\cdot)\)
  \(\chi_{5025}(791,\cdot)\)
  \(\chi_{5025}(821,\cdot)\)
  \(\chi_{5025}(881,\cdot)\)
  \(\chi_{5025}(971,\cdot)\)
  \(\chi_{5025}(1031,\cdot)\)
  \(\chi_{5025}(1061,\cdot)\)
  \(\chi_{5025}(1091,\cdot)\)
  \(\chi_{5025}(1121,\cdot)\)
  \(\chi_{5025}(1241,\cdot)\)
  \(\chi_{5025}(1271,\cdot)\)
  \(\chi_{5025}(1346,\cdot)\)
  \(\chi_{5025}(1361,\cdot)\)
  \(\chi_{5025}(1631,\cdot)\)
  \(\chi_{5025}(1691,\cdot)\)
  \(\chi_{5025}(1781,\cdot)\)
  \(\chi_{5025}(1796,\cdot)\)
  \(\chi_{5025}(1856,\cdot)\)
  \(\chi_{5025}(1886,\cdot)\)
  \(\chi_{5025}(1931,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1676,202,3151)\) → \((-1,e\left(\frac{4}{5}\right),e\left(\frac{8}{33}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |       
    
    
      | \( \chi_{ 5025 }(1886, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{179}{330}\right)\) | \(e\left(\frac{14}{165}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{199}{330}\right)\) | \(e\left(\frac{133}{165}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{28}{165}\right)\) | \(e\left(\frac{137}{330}\right)\) | \(e\left(\frac{136}{165}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)