sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5001, base_ring=CyclotomicField(34))
M = H._module
chi = DirichletCharacter(H, M([17,5]))
pari:[g,chi] = znchar(Mod(1118,5001))
| Modulus: | \(5001\) | |
| Conductor: | \(5001\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(34\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5001}(263,\cdot)\)
\(\chi_{5001}(290,\cdot)\)
\(\chi_{5001}(326,\cdot)\)
\(\chi_{5001}(479,\cdot)\)
\(\chi_{5001}(605,\cdot)\)
\(\chi_{5001}(845,\cdot)\)
\(\chi_{5001}(917,\cdot)\)
\(\chi_{5001}(1025,\cdot)\)
\(\chi_{5001}(1118,\cdot)\)
\(\chi_{5001}(2810,\cdot)\)
\(\chi_{5001}(3746,\cdot)\)
\(\chi_{5001}(3878,\cdot)\)
\(\chi_{5001}(4049,\cdot)\)
\(\chi_{5001}(4124,\cdot)\)
\(\chi_{5001}(4280,\cdot)\)
\(\chi_{5001}(4586,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3335,1669)\) → \((-1,e\left(\frac{5}{34}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 5001 }(1118, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{17}\right)\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{13}{17}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{16}{17}\right)\) | \(e\left(\frac{7}{17}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(1\) | \(e\left(\frac{9}{34}\right)\) | \(e\left(\frac{10}{17}\right)\) |
sage:chi.jacobi_sum(n)