sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(497, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([140,174]))
pari:[g,chi] = znchar(Mod(18,497))
| Modulus: | \(497\) | |
| Conductor: | \(497\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(105\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{497}(2,\cdot)\)
\(\chi_{497}(4,\cdot)\)
\(\chi_{497}(9,\cdot)\)
\(\chi_{497}(16,\cdot)\)
\(\chi_{497}(18,\cdot)\)
\(\chi_{497}(58,\cdot)\)
\(\chi_{497}(60,\cdot)\)
\(\chi_{497}(74,\cdot)\)
\(\chi_{497}(79,\cdot)\)
\(\chi_{497}(81,\cdot)\)
\(\chi_{497}(86,\cdot)\)
\(\chi_{497}(95,\cdot)\)
\(\chi_{497}(100,\cdot)\)
\(\chi_{497}(107,\cdot)\)
\(\chi_{497}(109,\cdot)\)
\(\chi_{497}(114,\cdot)\)
\(\chi_{497}(121,\cdot)\)
\(\chi_{497}(135,\cdot)\)
\(\chi_{497}(144,\cdot)\)
\(\chi_{497}(151,\cdot)\)
\(\chi_{497}(158,\cdot)\)
\(\chi_{497}(191,\cdot)\)
\(\chi_{497}(200,\cdot)\)
\(\chi_{497}(219,\cdot)\)
\(\chi_{497}(221,\cdot)\)
\(\chi_{497}(228,\cdot)\)
\(\chi_{497}(240,\cdot)\)
\(\chi_{497}(242,\cdot)\)
\(\chi_{497}(249,\cdot)\)
\(\chi_{497}(256,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((143,78)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{29}{35}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 497 }(18, a) \) |
\(1\) | \(1\) | \(e\left(\frac{32}{105}\right)\) | \(e\left(\frac{22}{105}\right)\) | \(e\left(\frac{64}{105}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{18}{35}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{44}{105}\right)\) | \(e\left(\frac{88}{105}\right)\) | \(e\left(\frac{37}{105}\right)\) | \(e\left(\frac{86}{105}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)