Properties

Label 497.ba
Modulus $497$
Conductor $497$
Order $70$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(497, base_ring=CyclotomicField(70)) M = H._module chi = DirichletCharacter(H, M([35,32])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(6,497)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(497\)
Conductor: \(497\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(70\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{497}(6,\cdot)\) \(-1\) \(1\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{61}{70}\right)\)
\(\chi_{497}(27,\cdot)\) \(-1\) \(1\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{59}{70}\right)\)
\(\chi_{497}(83,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{9}{70}\right)\)
\(\chi_{497}(90,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{13}{70}\right)\)
\(\chi_{497}(111,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{33}{70}\right)\)
\(\chi_{497}(146,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{1}{70}\right)\)
\(\chi_{497}(160,\cdot)\) \(-1\) \(1\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{69}{70}\right)\)
\(\chi_{497}(202,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{23}{70}\right)\)
\(\chi_{497}(216,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{43}{70}\right)\)
\(\chi_{497}(223,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{67}{70}\right)\)
\(\chi_{497}(237,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{27}{70}\right)\)
\(\chi_{497}(251,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{31}{70}\right)\)
\(\chi_{497}(286,\cdot)\) \(-1\) \(1\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{53}{70}\right)\)
\(\chi_{497}(293,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{51}{70}\right)\)
\(\chi_{497}(300,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{37}{70}\right)\)
\(\chi_{497}(342,\cdot)\) \(-1\) \(1\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{47}{70}\right)\)
\(\chi_{497}(363,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{19}{70}\right)\)
\(\chi_{497}(370,\cdot)\) \(-1\) \(1\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{57}{70}\right)\)
\(\chi_{497}(384,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{29}{70}\right)\)
\(\chi_{497}(391,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{17}{70}\right)\)
\(\chi_{497}(398,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{39}{70}\right)\)
\(\chi_{497}(405,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{11}{70}\right)\)
\(\chi_{497}(419,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{3}{70}\right)\)
\(\chi_{497}(475,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{41}{70}\right)\)