Properties

Label 497.268
Modulus $497$
Conductor $497$
Order $210$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(497, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([70,177]))
 
Copy content pari:[g,chi] = znchar(Mod(268,497))
 

Basic properties

Modulus: \(497\)
Conductor: \(497\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 497.bd

\(\chi_{497}(11,\cdot)\) \(\chi_{497}(44,\cdot)\) \(\chi_{497}(53,\cdot)\) \(\chi_{497}(65,\cdot)\) \(\chi_{497}(67,\cdot)\) \(\chi_{497}(93,\cdot)\) \(\chi_{497}(102,\cdot)\) \(\chi_{497}(123,\cdot)\) \(\chi_{497}(130,\cdot)\) \(\chi_{497}(149,\cdot)\) \(\chi_{497}(163,\cdot)\) \(\chi_{497}(170,\cdot)\) \(\chi_{497}(177,\cdot)\) \(\chi_{497}(184,\cdot)\) \(\chi_{497}(186,\cdot)\) \(\chi_{497}(198,\cdot)\) \(\chi_{497}(205,\cdot)\) \(\chi_{497}(207,\cdot)\) \(\chi_{497}(226,\cdot)\) \(\chi_{497}(235,\cdot)\) \(\chi_{497}(268,\cdot)\) \(\chi_{497}(275,\cdot)\) \(\chi_{497}(282,\cdot)\) \(\chi_{497}(291,\cdot)\) \(\chi_{497}(305,\cdot)\) \(\chi_{497}(312,\cdot)\) \(\chi_{497}(317,\cdot)\) \(\chi_{497}(319,\cdot)\) \(\chi_{497}(326,\cdot)\) \(\chi_{497}(331,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((143,78)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{59}{70}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 497 }(268, a) \) \(-1\)\(1\)\(e\left(\frac{76}{105}\right)\)\(e\left(\frac{26}{105}\right)\)\(e\left(\frac{47}{105}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{34}{35}\right)\)\(e\left(\frac{6}{35}\right)\)\(e\left(\frac{52}{105}\right)\)\(e\left(\frac{104}{105}\right)\)\(e\left(\frac{97}{210}\right)\)\(e\left(\frac{73}{105}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 497 }(268,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 497 }(268,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 497 }(268,·),\chi_{ 497 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 497 }(268,·)) \;\) at \(\; a,b = \) e.g. 1,2