sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(497, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([35,39]))
pari:[g,chi] = znchar(Mod(13,497))
| Modulus: | \(497\) | |
| Conductor: | \(497\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(70\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{497}(13,\cdot)\)
\(\chi_{497}(55,\cdot)\)
\(\chi_{497}(62,\cdot)\)
\(\chi_{497}(69,\cdot)\)
\(\chi_{497}(104,\cdot)\)
\(\chi_{497}(118,\cdot)\)
\(\chi_{497}(132,\cdot)\)
\(\chi_{497}(139,\cdot)\)
\(\chi_{497}(153,\cdot)\)
\(\chi_{497}(195,\cdot)\)
\(\chi_{497}(209,\cdot)\)
\(\chi_{497}(244,\cdot)\)
\(\chi_{497}(265,\cdot)\)
\(\chi_{497}(272,\cdot)\)
\(\chi_{497}(328,\cdot)\)
\(\chi_{497}(349,\cdot)\)
\(\chi_{497}(377,\cdot)\)
\(\chi_{497}(433,\cdot)\)
\(\chi_{497}(447,\cdot)\)
\(\chi_{497}(454,\cdot)\)
\(\chi_{497}(461,\cdot)\)
\(\chi_{497}(468,\cdot)\)
\(\chi_{497}(482,\cdot)\)
\(\chi_{497}(489,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((143,78)\) → \((-1,e\left(\frac{39}{70}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 497 }(13, a) \) |
\(1\) | \(1\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{69}{70}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{23}{70}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{34}{35}\right)\) | \(e\left(\frac{31}{70}\right)\) | \(e\left(\frac{19}{70}\right)\) | \(e\left(\frac{47}{70}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)