Properties

Label 495.bk
Modulus $495$
Conductor $55$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,5,4])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(37,495)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(495\)
Conductor: \(55\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 55.k
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.1402274470934209014892578125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(13\) \(14\) \(16\) \(17\) \(19\) \(23\)
\(\chi_{495}(37,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(-i\)
\(\chi_{495}(82,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(-i\)
\(\chi_{495}(163,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(i\)
\(\chi_{495}(262,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\)
\(\chi_{495}(388,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(i\)
\(\chi_{495}(433,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\)
\(\chi_{495}(478,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\)
\(\chi_{495}(487,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\)