Properties

Label 495.bd
Modulus $495$
Conductor $495$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([10,3,6])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(32,495)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(495\)
Conductor: \(495\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.1340505915846345703125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(13\) \(14\) \(16\) \(17\) \(19\) \(23\)
\(\chi_{495}(32,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(1\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{495}(263,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(1\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{495}(362,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(1\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{495}(428,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(1\) \(e\left(\frac{5}{12}\right)\)