Properties

Label 4864.65
Modulus $4864$
Conductor $304$
Order $12$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4864, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,9,2]))
 
Copy content pari:[g,chi] = znchar(Mod(65,4864))
 

Basic properties

Modulus: \(4864\)
Conductor: \(304\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{304}(141,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4864.ba

\(\chi_{4864}(65,\cdot)\) \(\chi_{4864}(449,\cdot)\) \(\chi_{4864}(2497,\cdot)\) \(\chi_{4864}(2881,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.52665458133728799752192.46

Values on generators

\((3839,2053,4353)\) → \((1,-i,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 4864 }(65, a) \) \(-1\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(-i\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4864 }(65,a) \;\) at \(\;a = \) e.g. 2