sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4864, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,9,2]))
pari:[g,chi] = znchar(Mod(65,4864))
\(\chi_{4864}(65,\cdot)\)
\(\chi_{4864}(449,\cdot)\)
\(\chi_{4864}(2497,\cdot)\)
\(\chi_{4864}(2881,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3839,2053,4353)\) → \((1,-i,e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 4864 }(65, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)