Properties

Label 4864.47
Modulus $4864$
Conductor $1216$
Order $144$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4864, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([72,99,64]))
 
Copy content pari:[g,chi] = znchar(Mod(47,4864))
 

Basic properties

Modulus: \(4864\)
Conductor: \(1216\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(144\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1216}(1187,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4864.cq

\(\chi_{4864}(47,\cdot)\) \(\chi_{4864}(111,\cdot)\) \(\chi_{4864}(175,\cdot)\) \(\chi_{4864}(207,\cdot)\) \(\chi_{4864}(271,\cdot)\) \(\chi_{4864}(367,\cdot)\) \(\chi_{4864}(655,\cdot)\) \(\chi_{4864}(719,\cdot)\) \(\chi_{4864}(783,\cdot)\) \(\chi_{4864}(815,\cdot)\) \(\chi_{4864}(879,\cdot)\) \(\chi_{4864}(975,\cdot)\) \(\chi_{4864}(1263,\cdot)\) \(\chi_{4864}(1327,\cdot)\) \(\chi_{4864}(1391,\cdot)\) \(\chi_{4864}(1423,\cdot)\) \(\chi_{4864}(1487,\cdot)\) \(\chi_{4864}(1583,\cdot)\) \(\chi_{4864}(1871,\cdot)\) \(\chi_{4864}(1935,\cdot)\) \(\chi_{4864}(1999,\cdot)\) \(\chi_{4864}(2031,\cdot)\) \(\chi_{4864}(2095,\cdot)\) \(\chi_{4864}(2191,\cdot)\) \(\chi_{4864}(2479,\cdot)\) \(\chi_{4864}(2543,\cdot)\) \(\chi_{4864}(2607,\cdot)\) \(\chi_{4864}(2639,\cdot)\) \(\chi_{4864}(2703,\cdot)\) \(\chi_{4864}(2799,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

\((3839,2053,4353)\) → \((-1,e\left(\frac{11}{16}\right),e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 4864 }(47, a) \) \(-1\)\(1\)\(e\left(\frac{49}{144}\right)\)\(e\left(\frac{115}{144}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{49}{72}\right)\)\(e\left(\frac{13}{48}\right)\)\(e\left(\frac{77}{144}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{55}{144}\right)\)\(e\left(\frac{1}{72}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4864 }(47,a) \;\) at \(\;a = \) e.g. 2