sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4864, base_ring=CyclotomicField(144))
M = H._module
chi = DirichletCharacter(H, M([72,99,64]))
pari:[g,chi] = znchar(Mod(47,4864))
\(\chi_{4864}(47,\cdot)\)
\(\chi_{4864}(111,\cdot)\)
\(\chi_{4864}(175,\cdot)\)
\(\chi_{4864}(207,\cdot)\)
\(\chi_{4864}(271,\cdot)\)
\(\chi_{4864}(367,\cdot)\)
\(\chi_{4864}(655,\cdot)\)
\(\chi_{4864}(719,\cdot)\)
\(\chi_{4864}(783,\cdot)\)
\(\chi_{4864}(815,\cdot)\)
\(\chi_{4864}(879,\cdot)\)
\(\chi_{4864}(975,\cdot)\)
\(\chi_{4864}(1263,\cdot)\)
\(\chi_{4864}(1327,\cdot)\)
\(\chi_{4864}(1391,\cdot)\)
\(\chi_{4864}(1423,\cdot)\)
\(\chi_{4864}(1487,\cdot)\)
\(\chi_{4864}(1583,\cdot)\)
\(\chi_{4864}(1871,\cdot)\)
\(\chi_{4864}(1935,\cdot)\)
\(\chi_{4864}(1999,\cdot)\)
\(\chi_{4864}(2031,\cdot)\)
\(\chi_{4864}(2095,\cdot)\)
\(\chi_{4864}(2191,\cdot)\)
\(\chi_{4864}(2479,\cdot)\)
\(\chi_{4864}(2543,\cdot)\)
\(\chi_{4864}(2607,\cdot)\)
\(\chi_{4864}(2639,\cdot)\)
\(\chi_{4864}(2703,\cdot)\)
\(\chi_{4864}(2799,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3839,2053,4353)\) → \((-1,e\left(\frac{11}{16}\right),e\left(\frac{4}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 4864 }(47, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{49}{144}\right)\) | \(e\left(\frac{115}{144}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{77}{144}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{55}{144}\right)\) | \(e\left(\frac{1}{72}\right)\) |
sage:chi.jacobi_sum(n)