sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4864, base_ring=CyclotomicField(192))
M = H._module
chi = DirichletCharacter(H, M([0,21,64]))
pari:[g,chi] = znchar(Mod(45,4864))
Modulus: | \(4864\) | |
Conductor: | \(4864\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(192\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4864}(45,\cdot)\)
\(\chi_{4864}(125,\cdot)\)
\(\chi_{4864}(197,\cdot)\)
\(\chi_{4864}(277,\cdot)\)
\(\chi_{4864}(349,\cdot)\)
\(\chi_{4864}(429,\cdot)\)
\(\chi_{4864}(501,\cdot)\)
\(\chi_{4864}(581,\cdot)\)
\(\chi_{4864}(653,\cdot)\)
\(\chi_{4864}(733,\cdot)\)
\(\chi_{4864}(805,\cdot)\)
\(\chi_{4864}(885,\cdot)\)
\(\chi_{4864}(957,\cdot)\)
\(\chi_{4864}(1037,\cdot)\)
\(\chi_{4864}(1109,\cdot)\)
\(\chi_{4864}(1189,\cdot)\)
\(\chi_{4864}(1261,\cdot)\)
\(\chi_{4864}(1341,\cdot)\)
\(\chi_{4864}(1413,\cdot)\)
\(\chi_{4864}(1493,\cdot)\)
\(\chi_{4864}(1565,\cdot)\)
\(\chi_{4864}(1645,\cdot)\)
\(\chi_{4864}(1717,\cdot)\)
\(\chi_{4864}(1797,\cdot)\)
\(\chi_{4864}(1869,\cdot)\)
\(\chi_{4864}(1949,\cdot)\)
\(\chi_{4864}(2021,\cdot)\)
\(\chi_{4864}(2101,\cdot)\)
\(\chi_{4864}(2173,\cdot)\)
\(\chi_{4864}(2253,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3839,2053,4353)\) → \((1,e\left(\frac{7}{64}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 4864 }(45, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{192}\right)\) | \(e\left(\frac{85}{192}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{31}{96}\right)\) | \(e\left(\frac{19}{64}\right)\) | \(e\left(\frac{155}{192}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{49}{192}\right)\) | \(e\left(\frac{19}{96}\right)\) |
sage:chi.jacobi_sum(n)