sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([140,205,168]))
pari:[g,chi] = znchar(Mod(817,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(124,\cdot)\)
\(\chi_{4851}(157,\cdot)\)
\(\chi_{4851}(346,\cdot)\)
\(\chi_{4851}(565,\cdot)\)
\(\chi_{4851}(598,\cdot)\)
\(\chi_{4851}(691,\cdot)\)
\(\chi_{4851}(724,\cdot)\)
\(\chi_{4851}(817,\cdot)\)
\(\chi_{4851}(850,\cdot)\)
\(\chi_{4851}(1006,\cdot)\)
\(\chi_{4851}(1039,\cdot)\)
\(\chi_{4851}(1258,\cdot)\)
\(\chi_{4851}(1291,\cdot)\)
\(\chi_{4851}(1384,\cdot)\)
\(\chi_{4851}(1417,\cdot)\)
\(\chi_{4851}(1510,\cdot)\)
\(\chi_{4851}(1543,\cdot)\)
\(\chi_{4851}(1699,\cdot)\)
\(\chi_{4851}(1732,\cdot)\)
\(\chi_{4851}(1951,\cdot)\)
\(\chi_{4851}(1984,\cdot)\)
\(\chi_{4851}(2110,\cdot)\)
\(\chi_{4851}(2203,\cdot)\)
\(\chi_{4851}(2392,\cdot)\)
\(\chi_{4851}(2425,\cdot)\)
\(\chi_{4851}(2644,\cdot)\)
\(\chi_{4851}(2770,\cdot)\)
\(\chi_{4851}(2803,\cdot)\)
\(\chi_{4851}(2896,\cdot)\)
\(\chi_{4851}(2929,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{41}{42}\right),e\left(\frac{4}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(817, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{89}{105}\right)\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{59}{70}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{73}{210}\right)\) | \(e\left(\frac{41}{105}\right)\) | \(e\left(\frac{127}{210}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{113}{210}\right)\) |
sage:chi.jacobi_sum(n)