sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([140,120,84]))
pari:[g,chi] = znchar(Mod(610,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(105\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(169,\cdot)\)
\(\chi_{4851}(400,\cdot)\)
\(\chi_{4851}(421,\cdot)\)
\(\chi_{4851}(526,\cdot)\)
\(\chi_{4851}(610,\cdot)\)
\(\chi_{4851}(652,\cdot)\)
\(\chi_{4851}(841,\cdot)\)
\(\chi_{4851}(862,\cdot)\)
\(\chi_{4851}(988,\cdot)\)
\(\chi_{4851}(1093,\cdot)\)
\(\chi_{4851}(1114,\cdot)\)
\(\chi_{4851}(1219,\cdot)\)
\(\chi_{4851}(1303,\cdot)\)
\(\chi_{4851}(1345,\cdot)\)
\(\chi_{4851}(1534,\cdot)\)
\(\chi_{4851}(1555,\cdot)\)
\(\chi_{4851}(1681,\cdot)\)
\(\chi_{4851}(1786,\cdot)\)
\(\chi_{4851}(1807,\cdot)\)
\(\chi_{4851}(1996,\cdot)\)
\(\chi_{4851}(2038,\cdot)\)
\(\chi_{4851}(2227,\cdot)\)
\(\chi_{4851}(2248,\cdot)\)
\(\chi_{4851}(2374,\cdot)\)
\(\chi_{4851}(2479,\cdot)\)
\(\chi_{4851}(2605,\cdot)\)
\(\chi_{4851}(2689,\cdot)\)
\(\chi_{4851}(2731,\cdot)\)
\(\chi_{4851}(2920,\cdot)\)
\(\chi_{4851}(3067,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{4}{7}\right),e\left(\frac{2}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(610, a) \) |
\(1\) | \(1\) | \(e\left(\frac{97}{105}\right)\) | \(e\left(\frac{89}{105}\right)\) | \(e\left(\frac{53}{105}\right)\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{62}{105}\right)\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{31}{35}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{37}{105}\right)\) |
sage:chi.jacobi_sum(n)